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Many species of termite (Isoptera) build their nests
inside mounds because a moand has direct and positive
feedback effects on the termite colontes through the
maintenance of humidity and protection of thepopulation
from enemies, e.g. ants (Jouquet et al. 2006, Korb
2003, Noirot & Darlington 2000). Soil manipulation
by termites (Isoptera) for mound construction is of
particular interest for many researchers in terms of
pedogenesis of the tropics (Lavelle et al. 1992, Lobry
de Bruyn & Conacher 1990}. The termites select soil
particles according to ecological requirements such as
wateravailability (Jouquet ef al. 2002, 200 7}and improve
soil structural stability by means of application of clay
particles and saliva/excreta (Fall et al. 2001, Jougquet
et al. 2004). The nest-building activity of the termites
inevitably causes regional translocation of soils (Bagine
1984, Holt & Lepage 2000) and distinctive patches in
local ecosystems, which contributestoecological diversity
(Lavelle et al. 1992). This is the reason why termites are
regarded as an ecological engineer {(Jouquet et al. 2006).
Soil-particle selection by the termites, however, has not
been fully explored in relation to diverse ecologies and
landscapes in Alrica.

Inland valleys are an important geological component
in West Africa supporting biological or ecological
diversity. In the inland valleys, soil characteristics are
often affected by toposequence position (Windmeijer &
Andriesse 1993). We hypothesize that toposequence
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influences termite nest-building activity. In fact, number
and volume of termite mounds are often found to be
lower in the lowlands than the uplands (Abe et al
2009, Kang 1978). The objective of this paper, therefore,
was to examine effects of toposequence on soil-particle
selection by Macrotermes bellicesus, a dominant species
in Nigerian tropical savanna. To achieve this aim, we
assessed principal mound structures as compared with
natural horizons of surrounding pedons (smallest volume
of a representative soil for description and sampling) on a
sandy loam catena by measuring particle size distribution
with five sand and two silt fractions. Most previous studies
considered the mound as a whole and compared it with
adjacent topsoil only (Lobry de Bruyn & Conacher 1990).
However, other studies have shown that termites use
subsoil to build a mound and that soil properties may
vary according to the different structures built within the
mound, such as walls, hives and pillars (Jouguet ef al.
2004, Lavelle et al. 1992),

Afieldsurvey was conductedin an inland valley in Bida,
about 165 km west of the capital Abuja, Nigeria, during
the dry season (February 2005). This location is part
of the Guinea savanna agro-ecological zone with mean
annual rainfall of about 1100 mm and mean annual daily
temperature of approximately 23° C, Thesoilin thisregion
is underlain by Nupe sandstone, a Cretaceous mixture
of coarse grits, conglomerates, fine-grained sandstones,
siltstones and shales, and thus is sandy, kaolinitic and/or
siliceous (Abe et al. 2006, 2007). In the inland valley, we
investigated three dilferent toposequence positions, i.e.
valley bottom, hydromorphic fringe and upland plateaun,
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and selected a represenfative mound constructed by
M. bellicosus Smethman (Isoptera: Macrotermitinae) at
eachposition. Soil samples were collected from identifiable
biogenic structuresi.e, external wall, internal wall, hives,
royal cell, base-plate and pillars, in mounds and soils
below the nest, The bottom and fringe mounds were
less developed and thus provided fewer samples than the
upland mound (Abe ¢t al. 2009), Soils were also sampled
from natural horizons of pedons 2 m away from the
mounds. Scil morphological alterations by the termites
were not visible in the pedons.

The gravel (>2 mm) content was obtained by dry-
sieving. The particle-size distribution was measured after
decomposition of the organic matter and removal of free
sesquioxides (when necessary), as described by Gee & Or
(2002). The sand fractions, i.e. very coarse (VC) sand (1-
2 mm), coarse (C) sand (0.5-1 mm), medium (M) sand
(0.25-0.5 mm), fine (F) sand (0.10-0.25 mm) and very
fine (VF) sand (0.05-0.10 mm) were separated by wet-
sieving. The silt, i.e. C silt (20-53 pm) and F stlt (2—
20um), and clay (<2um) fractions were separated
by means of the pipette method ensuring optimal
dispersion in 0.5% sodium hexametaphosphate solution.
The particle-size distribution was expressed on an oven-
dry basis at 105 °C,

Data were statistically examined by analysis of
variance using the StatView software (Version 5.0.1.,
SAS Inst., Cary, NC, USA) and means were separated
between mound structures and natural horizons at each
toposequence position by Fisher's protected probability
test.

Particle size distribution varied widely among
structural units of the mounds (Figure 1), which indicated
the methodological weakness of many previous reports
(Ekundayo & Aghatise 1997, Sheikh & Kayani 1982)
that assessed the mound as a whole and adjacent topsoil
only. In particular, structural units in the nest body
(i.e. hives, royal cells and base plates) contained finer
particles than the other mound constituents (i.e, wallsand
pillars) and soils below the mownd, except for the fringe
mound, where nest body and other mound constituents
had similar particle size distribution. Combination of
silt and sand distribution differentiates nest bodies from
the other mound structures at any location on the
toposequence. This suggests that M. bellicosus will use
different soil particles depending on the function of each
mound structure or ecological requirement for their
livelihood. Jouquet et ol (2002, 2007) also pointed
out that the termites (Odontotermes nr. pauperans and
Pseudacanthoteries spiniger) used soils having contrasting
particle size distribution by selection to various extents in
response to ecological requirements such as structural
stability and water-holding capacity.

In spite of considerable variability in the mounds,
the mound structures, particularly the upland mounds,
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Table 1. Analysis of variance of the influence of toposequence
and Macrotermes bellicosus on particle-size distribution.*, ** and ***
represent P < 0.05, P < (.01 and P < 0.001, respectively. T = total;
VC = very coarse; C = coarse; M= medium; F = fine; VF = very fine.

Particle-size Toposequence X
fractions Toposequence Termite influence  Termite influence
Gravel 1.81 14.2% 1.68
T sand 4.15*% 15,54+ 0.88
VCsand 101+ 8.55% 1.03
Csand 7.09** 10.7% 1.55
M sand 5.94* 7.38% 0.89
Fsand 3.78* 8.09** 0.80
VF sand 51.4%* 0.36 041
T silt 50.8% 6.57% 0.29
Csilt 55,1%* 3.65 0.05
Fsilt 35,94 8.27% 0.77
Clay 5.50* 14.7%+* 1.62

apparently had finer particles than the upper horizons of
the adjacent pedons (Figure 1). Setting the subsurface
horizen (Ap2) fraction to 100%, fractions that were
depleted in the mound as compared with the subsurface
horizon were: VC sand (average bottom mound (Mg),
58%; fringe mound (Mg}, 33%; upland mound (M),
49%), C sand (average Mg, 54%; Mg, 38%; My, 39%),
M sand (average Mg, 71%; My, 66%; My, 60%) and F
sand (average My, 79%; Mg, 81%; My, 84%). Fractions
that were enriched in the mound as compared with the
subsurface horizon were: C silt (average Mg, 130%; Mg,
103%; My, 130%), F silt (average Mg, 145%: Mg, 124%:
My, 116%) and clay (average Mg, 254%; My, 224%:; My,
636%). The limit for particle size selection by M. bellicosus
was VF sand because there were no clear differences
observed in VE sand content between the mound and
the pedon at each toposequence position. In addition,
the mound structures were gravel-ree in contrast to
the surrounding pedons which contained gravel in the
range 0.39-7.61 g kg—1. These results were supported
by analysis of variance which showed influence of
M. bellicosus on various sizes of particles except for VF sand
and C silt (Table 1). Furthermore, the Fisher's protected
probability test indicated significant differencesin the con-
tents of gravel, total (T) sand and clay between the mound
and pedon at each toposequence position (Table 2).
This indicates that M. bellicosus preferentially uses finer
soil particles and intentionally excludes gravel in building
mounds. This is in agreement with many previous studies
{Jouguet et al. 2002, 2004, 2007; Lobry de Bruyn &
Conacher 1990). Macrotermes bellicosus manipulated clay
most among the different particle size fractions becanse
clay accumulated in the mounds plays a significant role in
stabilization of the mound structure or in enhancement
of water-holding capacity Jouquet et al. 2002, 2004).

It is noticeable from Figure 1, that the upland mound
contained more clay but less C and F silts and VF sand
than the fringe and bottom. The particle size distribution
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Figure 1. Particle-size distribution of Macrotermes bellicosus mounds and surrounding pedons on a toposequence at the study site, A = mineral
surface horizon with organic matter accumulation; B = subsurface soil structure; C = little or no pedogenic alteration, g = greyish colour with

redoximorphic features; p = plough layer or other artificial disturbance; t = illuvial accumulation of silicate clay; w =

development.

weak colour or structure




163
le4
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186

187

188
189
190
191
192
193
194
195
196

4 SUSUMU S. ABE ET AL

Table 2, Comparison of particle-size distribution between the Macretermes bellicosus mound and surrounding pedon at each toposequence position
at the study site. The value represents mean =+ SD. The t-test represents not significant {ns), significant P < 0.05 (*), P < 0.01 (*)or P < 0.001
{***} between the mound structures and adjacent natural horizons at each toposequence position. Gravel in the fringe pedon exceptionally hasn

= 5. T =total; VC = very coarse: C = coarse; M = medium; F = fine; VF = very [ine.

Bottom (Fluvraquentic Epiaquept) Fringe (Fluvaquentic Epiaqualf) Upland (Typic Kandiustalf)
Particle-size
fractions Mound (n=4} Pedon(n=35) &test Mound (n=5} Pedon(n=6) ttest Mound(n=6) Pedon(n=4) t-test
Gravel 0.0+£0.0 0.6+0.2 e 0.1+0.2 284340 ** 0.0+0.0 28+09 *
T sand 553421 6h9+15 ** 409 +3.9 63677 * 525+7.1 783+64 *
VCsand 19+1.2 25407 ns 0.6 £0.8 28420 * 3.0£25 5.7+04 ns
Csand 74+34 104£21 ns 27+33 10676 ns 94497 21.7+25 *
M sand 14.8:+2.0 17.3+2.0 ns 10.4 £ 4.0 220+138 ns 188+ 7.7 295+ 59 *
Fsand 17.6+£1.9 21.94+1.7 i 16.1+3.5 183409 ns 159+1.3 174+ 46 ns
VF sand 13.5+1.3 13.7%1.3 ns 11.1+1.3 100+43 ns 54+1.3 40+0.5 ns
T silt 318108 281+1.2 ns 3514+1.2 25.5+48 ns 129+14 9.0+09 ns
Csilt 18.7£0.9 17.1%£1.7 ns 178+1.3 13.8+ 64 ns 6.6 2.6 4.5+ 0.6 ns
Fsilt 131416 110413 ns 17316 L11.7+54 ns 6.4+2.1 46+1.4 ns
Clay 13.0+26 6.0+£0.8 i 240+63 109+7.8 * 346+ 143 12,7+ 14.2 ¥
of the mounds apparently reflects that of the surrounding  LITERATURE CITED

pedons. It is widely agreed that termites preferentially
use subsoil material to build their mounds (Lee & Wood
1971, Lobry de Bruyn & Conacher 1990). The findings of
this study suggest that M. bellicosus maily used argillic
horizons (a subsurface horizon with clay illaviation), i.e.
Btgl and Btg2 at the fringe, and Bt2 at the upland, for
building their mounds. This assumption is also supported
by soil organic carbon distribution and forms and contents
of iron oxides (Abe & Wakatsuki untpubl. data, Abe et al,
20009). The limited number and relatively small volume
of M. bellicosus mounds in the lowlands (Abe et al. 2009,
Kang 1978) is probably due to interference with a shallow
water table in poorly drained soils. However, limited
access to a clay-rich subsoil may be another constraint
for mound construction. This might be endorsed by field
observation that well-developed mound nests with a
cathedral shape and base plate were found only in well-
drained upland sites (Abe et al. 2009).

Our findings showed (1) M. belicosus generally selected
the same particle size whatever the local soil along the
toposequence, but (2) clay content in the subsoil and
accessibility to clay-rich soil horizons may define nest-
building capacity.
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